TA: LEE, Yat Long Luca **Email:** <yllee@math.cuhk.edu.hk> **Office:** Room 505, AB1 **Office Hour:** Send me an email first, then we will arrange a meeting (if you need it).

1 Isomorphism

Definition 1.1. Let *V* and *W* be vector spaces. Then *V* is *isomorphic* to *W*, written $V \cong W$, if there exists a linear transformation $T : V \longrightarrow W$ that is invertible. Such a linear transformation is called an *isomorphism* from *V* to *W*.

Useful Facts:

- *•* If *V* and *W* are finite-dimensional vector spaces over *F*. Then *V* is isomorphic to *W* if and only if $\dim V = \dim W$.
- (Corollary of the above fact) *V* \cong *F*^{*n*} if and only if dim *V* = *n*.
- *•* Let *V* and *W* are finite-dimensional vector spaces over *F* of dimensions *n* and *m* with ordered basis β and γ , respectively. Then the function $\Phi_{\beta}^{\gamma} : \mathcal{L}(V, W) \longrightarrow M_{m \times n}(F)$, defined by $\Phi_{\beta}^{\gamma}(T) = [T]_{\beta}^{\gamma}$ for $T \in \mathcal{L}(V, W)$, is an isomorphism.
- dim $\mathcal{L}(V, W) = mn$.

Exercises

Q1: Get to know what is an isomorphosm

Let *B* be an $n \times n$ invertible matrix. Define $\Phi : M_{n \times n}(F) \longrightarrow M_{n \times n}(F)$ by $\Phi(A) = B^{-1}AB$. Prove that Φ is an isomorphism.

Q2: First Isomorphism Theorem

This is a standard result, similar statements hold for different algebraic objects, like groups, rings, modules etc. Interested students can read [Abstract Algebra by Dummit & Foote]. I will state the following vector space version:

• Let $T: V \longrightarrow W$ be a linear transformation. Then the linear transformation

$$
\overline{T}:V/\ker T\longrightarrow W
$$

defined by

$$
\overline{T}(v + \ker T) = T(v)
$$

is injective and

 $V/\ker T \cong \operatorname{im} T$.

You can try to prove it yourself, or Google for the proof.

2 Change of Coordinate Matrix

You have encountered this many times in calculus.

Idea:

- *•* Given two different ordered bases, we have different representations for the same vector.
- *•* You can think of different bases as "different coordinate axes", then, despite the vector is still geometrically the same, it will have a different representation.
- *•* Given a relation:

$$
\begin{cases} x = a_{11}x' + a_{12}y' \\ y = a_{21}x' + a_{22}y' \end{cases}
$$

then change of coordinate matrix is simply

$$
\begin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix}.
$$

One can then generalize the result to higher dimensional cases, that is

• Given $(x_1, ..., x_n)$ is an "old" coordinate w.r.t. β and $(x'_1, ..., x'_n)$ is a "new" coordinate w.r.t β' . Then

$$
x_j' = \sum_{i=1}^n Q_{ij} x_i
$$

where the *j*-th column of Q is $[x'_j]_{\beta}$.

The exercises are mainly computational, you may refer to the textbook for some exercises on that.

3 Eigenvalues and Eigenvectors

Definition 3.1. A linear operator *T* on a finite-dimensional vector space *V* is called *diagonalizable* if there is an ordered basis β for *V* such that $[T]_\beta$ is a diagonal matrix. A square matrix *A* is called *diagonalizable* if *L^A* is diagonalizable

Remark. $L_A: V \longrightarrow V$ is a linear operator defined by $L_A(x) = Ax$ for some matrix $A \in$ $M_{n\times n}(F)$.

Definition 3.2. Let *T* be a linear operator on a vector space *V*. A nonzero vector $v \in V$ is called an *eigenvector* of *T* if there exists a scalar λ such that $T(v) = \lambda v$. The scalar λ is called the *eigenvalue* corresponding to the eigenvector *v*.

Useful Facts:

- *•* A linear operator *T* on a finite-dimensional vector space *V* is diagonalizable if and only if there exists an ordered basis β for *V* consisting of eigenvectors of *T*.
- If *T* is diagonalizable, $\beta = \{v_1, ..., v_n\}$ is an ordered basis of eigenvectors of *T*, and *D* = $[T]$ _{β}, then *D* is a diagonal matrix and D_{ii} is the eigenvalue corresponding to v_i for all $1 \leq i \leq n$.
- An $n \times n$ matrix *A* is diagonalizable if and only if there exists an ordered basis for F^n consisting of eigenvectors of *A*. Furthermore, if $\{v_1, ..., v_n\}$ is an ordered basis for F^n consisting of eigenvectors of *A* and *Q* is the $n \times n$ matrix whose *i*-th column is v_i for $i = 1, \ldots, n$, then $D = Q^{-1}AQ$ is a diagonal matrix such that D_{ii} is the eigenvalue of *A* corresponding to *vi*.
	- **–** In other words, *A* is diagonalizable if and only if it is similar to a diagonal matrix.

Definition 3.3. Let *A* ∈ *M*_{*n*×*n*}(*F*). The polynomial $f(t) = det(A - tI_n)$ is called the *characteristic polynomial* of *A*. If *T* is a linear operator, then its characteristic polynomial is defined to be $\det([T]_{\beta}-tI_n)$.

Useful Facts:

- Let $A \in M_{n \times n}(F)$,
	- **–** the characteristic polynomial of *A* is a polynomial of degree *n* with leading coefficient $(-1)^n$;
	- **–** *A* has at most *n* distinct eigenvalues.

Furthermore we let λ be an eigenvalue of A, then

– a vector $v \in F^n$ is an eigenvector of A corresponding to λ if and only if $v \neq 0$ and $(A - \lambda I)v = 0.$

Exercises

Q3

Source: Textbook §5.1 Q9.

- (a) Prove that a linear operator *T* on a finite-dimensional vector space is invertible if and only if zero is not an eigenvalue of *T*.
- (b) Let *T* be an invertible linear operator. Prove that a scalar λ is an eigenvalue of *T* if and only if λ^{-1} is an eigenvalue of T^{-1} .

Q4

If *T* is *nilpotent* linear operator, then the only eigenvalue of *T* is 0.

Q5

Let $A \in M_{2\times 2}(\mathbb{Z}/p\mathbb{Z})$. Determine the number of characteristic polynomials of A.

Q6

Let *A* and *B* be $n \times n$ matrices that are similar, i.e., there exists an invertible $n \times n$ matrix *P* such that $A = P^{-1}BP$. Show that *A* and *B* have the same characteristic polynomial.

4 Diagonalizability

Useful Facts:

- Let *T* be a linear operator on a vector space, and let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of *T*. For each $i = 1, ..., k$, denote S_i be a finite set of eigenvectors of *T* corresponding to λ_i . If each S_i is linearly independent, then $S_1 \cup \cdots \cup S_k$ is linear independent.
- *•* Let *T* be a linear operator on an *n*-dimensional vector space *V* . If *T* has *n* distinct eigenvalues, then *T* is diagonalizable.

Definition 4.1. A polynomial $f(t)$ over *F splits over F* if there are scalars $c, a_1, ..., a_n$ (not necessarily distinct) in *F* such that

$$
f(t) = c(t - a_1) \cdots (t - a_n)
$$

Basic example: Think of $\mathbb C$, which every polynomial splits over $\mathbb C$ by the fundamental theorem of algebra.

Useful Facts:

- *•* The characteristic polynomial of any diagonalizable linear operator on a vector space *V* over a field *F* splits over *F*.
	- **–** In the sense that $\det([T]_{\beta} tI) = \prod_{i=1}^{n}(-1)^{n}(t \lambda_{i}).$

Definition 4.2. Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial $f(t)$. The *algebraic multiplicity* of λ is the largest positive integer *k* for which $(t - \lambda)^k$ is a factor of $f(t)$.

The *geometric multiplicity* of λ is the dimension of its eigenspace.

Note that the two multiplicities may not be the same. Read textbook §5.1 on "Test for Diagonalizability".

Exercises

Q7

Let *T* be an invertible linear operator on a finite-dimensional vector space *V* .

- (a) If λ is an eigenvalue of *T*. Show that the eigenspaces of *T* corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1} .
- (b) If *T* is diagonalizable, then T^{-1} is diagonalizable.

Q8: Algebraic Multiplicity and Geometric Multiplicity of eigenvalues

Find all possible Jordan forms for a matrix whose characteristic polynomial is given by

 $(t+2)^2(t-5)^3$

5 Solution to Exercises

Q1

First of all it is linear, because

$$
\Phi(A+C) = B^{-1}(A+C)B = B^{-1}AB + B^{-1}CB = \Phi(A) + \Phi(C)
$$

and

$$
\Phi(cA) = B^{-1}(cA)B = cB^{-1}AB = c\Phi(A).
$$

Next, we let $\Psi(A) := BAB^{-1}$, then

$$
\Phi(\Psi(A)) = \Phi(BAB^{-1}) = B^{-1}BAB^{-1}B = A
$$

and

$$
\Psi(\Phi(A)) = \Psi(B^{-1}AB) = BB^{-1}ABB^{-1} = A
$$

hence Ψ is the inverse of Φ .

Q2

Google for the solution if you are interested.

Q3

- (a) Let *T* be invertible, then it is bijective, then $T(x) \neq 0$ for all $x \neq 0$. Hence zero is not an eigenvalue of *T*. Conversely, if *T* is not invertible, then there must exist some $x \neq 0$ such that $T(x) = 0$, which in this case $\lambda = 0$ is an eigenvalue.
- (b) Given that $T(x) = \lambda x$, then $T^{-1}(T(x)) = \lambda T^{-1}(x) \iff \lambda^{-1}x = T^{-1}(x)$.

Q4

If *T* is nilpotent, i.e., $T^n = 0$ for some integer $n > 0$. Then

$$
0 = T^{n}(x) = T^{n-1}(\lambda x) = T^{n-2}(\lambda^{2} x) = \dots = \lambda^{n} x
$$

hence $\lambda = 0$.

.

Q5

Write
$$
A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}
$$
, then
\n
$$
\det(A - tI) = (a_{11} - t)(a_{22} - t) - a_{12}a_{21}.
$$

For the choice of a_{11} and a_{12} , we have p many options; while for $a_{12}a_{21}$ if $a_{12} = 0$, then the choice of a_{21} does not matter; similarly for $a_{21} = 0$. If $a_{12}, a_{21} \neq 0$, then each of them have $p-1$ many options.

Q6

$$
det(A - tI) = det(P^{-1}BP - tP^{-1}IP)
$$

= det(P⁻¹(B - tI)P)
= det(P⁻¹) det(B - tI) det P
= det(B - tI)

Q7

(a) Let $E_{\lambda,T}$ and $E_{\lambda^{-1},T^{-1}}$ denote the eigenspaces of *T* and T^{-1} with respect to λ and λ^{-1} , respectively.

Let $x \in E_{\lambda,T}$, we have $T(x) = \lambda x$, then $T^{-1}(T(x)) = \lambda T^{-1}(x) \iff \lambda^{-1}x = T^{-1}(x)$. Hence $x \in E_{\lambda^{-1},T^{-1}}$

The other inclusion is done similarly. Hence they are equal.

(b) If *T* is diagonalizable, then by picking a suitable ordered basis, we have

$$
[T]_{\beta} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}.
$$

Then by (a), we have

$$
[T^{-1}]_{\beta} = ([T]_{\beta})^{-1} = [T]_{\beta} = \begin{pmatrix} \lambda_1^{-1} & & \\ & \ddots & \\ & & \lambda_n^{-1} \end{pmatrix}.
$$

Q8

You can check the book "Algebra" by Michael Artin to learn more about the Jordan form of a matrix. This question is taken out from his book on the chapter about modules.

6 Recording

Link: [Here](https://cuhk.zoom.us/rec/share/k0E3dOMwom_jJrMvtJFD-wXxpIbM4DWdpXcaoPNmQXA1I_uMRVqtOjadDiUN3koV.YvfIGmPi7WJpR8hf) Password: N=\$n0Mz0